Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
ChemMedChem ; 17(4): e202100582, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1540073

ABSTRACT

The reactive organoselenium compound ebselen is being investigated for treatment of coronavirus disease 2019 (COVID-19) and other diseases. We report structure-activity studies on sulfur analogues of ebselen with the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro ), employing turnover and protein-observed mass spectrometry-based assays. The results reveal scope for optimisation of ebselen/ebselen derivative- mediated inhibition of Mpro , particularly with respect to improved selectivity.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , COVID-19/virology , Humans , Isoindoles/chemistry , Organoselenium Compounds/chemistry , Protease Inhibitors/chemistry , Structure-Activity Relationship
2.
Bioorg Chem ; 117: 105455, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487613

ABSTRACT

The main protease (Mpro or 3CLpro) of SARS-CoV-2 virus is a cysteine enzyme critical for viral replication and transcription, thus indicating a potential target for antiviral therapy. A recent repurposing effort has identified ebselen, a multifunctional drug candidate as an inhibitor of Mpro. Our docking of ebselen to the binding pocket of Mpro crystal structure suggests a noncovalent interaction for improvement of potency, antiviral activity and selectivity. To test this hypothesis, we designed and synthesized ebselen derivatives aimed at enhancing their non-covalent bonds within Mpro. The inhibition of Mpro by ebselen derivatives (0.3 µM) was screened in both HPLC and FRET assays. Nine ebselen derivatives (EBs) exhibited stronger inhibitory effect on Mpro with IC50 of 0.07-0.38 µM. Further evaluation of three derivatives showed that EB2-7 exhibited the most potent inhibition of SARS-CoV-2 viral replication with an IC50 value of 4.08 µM in HPAepiC cells, as compared to the prototype ebselen at 24.61 µM. Mechanistically, EB2-7 functions as a noncovalent Mpro inhibitor in LC-MS/MS assay. Taken together, our identification of ebselen derivatives with improved antiviral activity may lead to developmental potential for treatment of COVID-19 and SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Isoindoles/chemistry , Organoselenium Compounds/chemistry , SARS-CoV-2/enzymology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Catalytic Domain , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Coronavirus 3C Proteases/metabolism , Drug Design , Fluorescence Resonance Energy Transfer , Humans , Isoindoles/metabolism , Isoindoles/pharmacology , Isoindoles/therapeutic use , Molecular Docking Simulation , Organoselenium Compounds/metabolism , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Tandem Mass Spectrometry , COVID-19 Drug Treatment
3.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1409705

ABSTRACT

The inhibition mechanism of the main protease (Mpro) of SARS-CoV-2 by ebselen (EBS) and its analog with a hydroxyl group at position 2 of the benzisoselenazol-3(2H)-one ring (EBS-OH) was studied by using a density functional level of theory. Preliminary molecular dynamics simulations on the apo form of Mpro were performed taking into account both the hydrogen donor and acceptor natures of the Nδ and Nε of His41, a member of the catalytic dyad. The potential energy surfaces for the formation of the Se-S covalent bond mediated by EBS and EBS-OH on Mpro are discussed in detail. The EBS-OH shows a distinctive behavior with respect to EBS in the formation of the noncovalent complex. Due to the presence of canonical H-bonds and noncanonical ones involving less electronegative atoms, such as sulfur and selenium, the influence on the energy barriers and reaction energy of the Minnesota hybrid meta-GGA functionals M06, M06-2X and M08HX, and the more recent range-separated hybrid functional wB97X were also considered. The knowledge of the inhibition mechanism of Mpro by the small protease inhibitors EBS or EBS-OH can enlarge the possibilities for designing more potent and selective inhibitor-based drugs to be used in combination with other antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , Binding Sites/drug effects , COVID-19/virology , Catalytic Domain/drug effects , Coronavirus 3C Proteases/metabolism , Drug Design , Humans , Isoindoles/chemistry , Isoindoles/therapeutic use , Molecular Docking Simulation , Molecular Dynamics Simulation , Organoselenium Compounds/chemistry , Organoselenium Compounds/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
4.
Nat Commun ; 12(1): 3061, 2021 05 24.
Article in English | MEDLINE | ID: covidwho-1387342

ABSTRACT

The SARS-CoV-2 pandemic has triggered global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro), critical for viral replication, is a key target for therapeutic development. An organoselenium drug called ebselen has been demonstrated to have potent Mpro inhibition and antiviral activity. We have examined the binding modes of ebselen and its derivative in Mpro via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger Mpro inhibition than ebselen and potent ability to rescue infected cells were observed for a number of derivatives. A free selenium atom bound with cysteine of catalytic dyad has been revealed in crystallographic structures of Mpro with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct and formation of a phenolic by-product, confirmed by mass spectrometry. The target engagement with selenation mechanism of inhibition suggests wider therapeutic applications of these compounds against SARS-CoV-2 and other zoonotic beta-corona viruses.


Subject(s)
Azoles/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Organoselenium Compounds/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Azoles/chemistry , Catalytic Domain , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine/chemistry , Hydrolysis , Isoindoles , Models, Molecular , Organoselenium Compounds/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Reference Standards , SARS-CoV-2/drug effects , Salicylanilides/chemistry , Salicylanilides/pharmacology , Selenium/metabolism
5.
Mol Inform ; 40(8): e2100028, 2021 08.
Article in English | MEDLINE | ID: covidwho-1345038

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the thiol (-SH) group of Cys (from the protease active sites) and the electrophilic centers of the organoselenium molecules, i. e. the interaction with the carbonyl group (O=C… SH) and the interaction with the Se moiety (Se… SH). Both interactions may lead to an adduct formation and enzyme inhibition. Density Functional Theory (DFT) calculations with Ebselen indicate that the energetics of the thiol nucleophilic attack is more favorable on Se than on the carbonyl group, which is in accordance with experimental data (Jin et al. Nature, 2020, 582, 289-293). Therefore, organoselenium molecules should be further explored as inhibitors of the SARS-CoV-2 proteases. Furthermore, we suggest that some metabolites of Ebselen (e. g. Ebselen diselenide and methylebselenoxide) and derivatives ethaselen and ebsulfur should be tested in vitro as inhibitors of virus replication and its proteases.


Subject(s)
Azoles/pharmacology , COVID-19 Drug Treatment , Coronavirus Papain-Like Proteases/metabolism , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Matrix Proteins/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Azoles/chemistry , Azoles/metabolism , COVID-19/metabolism , Catalytic Domain/drug effects , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Discovery , Humans , Isoindoles , Molecular Docking Simulation , Organoselenium Compounds/chemistry , Organoselenium Compounds/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Viral Matrix Proteins/antagonists & inhibitors
6.
Molecules ; 26(14)2021 Jul 12.
Article in English | MEDLINE | ID: covidwho-1323315

ABSTRACT

Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.


Subject(s)
Azoles/chemistry , Azoles/chemical synthesis , Azoles/pharmacology , Organoselenium Compounds/chemistry , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Biomimetics/methods , Cyclooxygenase Inhibitors/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/pharmacology , Humans , Isoindoles , Molecular Structure , Neuroprotective Agents/pharmacology , Selenium/chemistry , Selenoproteins/chemical synthesis , Selenoproteins/pharmacology
7.
Sci Rep ; 11(1): 3640, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1078609

ABSTRACT

An efficient treatment against a COVID-19 disease, caused by the novel coronavirus SARS-CoV-2 (CoV2), remains a challenge. The papain-like protease (PLpro) from the human coronavirus is a protease that plays a critical role in virus replication. Moreover, CoV2 uses this enzyme to modulate the host's immune system to its own benefit. Therefore, it represents a highly promising target for the development of antiviral drugs. We used Approximate Bayesian Computation tools, molecular modelling and enzyme activity studies to identify highly active inhibitors of the PLpro. We discovered organoselenium compounds, ebselen and its structural analogues, as a novel approach for inhibiting the activity of PLproCoV2. Furthermore, we identified, for the first time, inhibitors of PLproCoV2 showing potency in the nanomolar range. Moreover, we found a difference between PLpro from SARS and CoV2 that can be correlated with the diverse dynamics of their replication, and, putatively to disease progression.


Subject(s)
Antiviral Agents/pharmacology , Azoles/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Molecular Docking Simulation , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/chemistry , Azoles/chemistry , Binding Sites , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Isoindoles , Organoselenium Compounds/chemistry , Protease Inhibitors/chemistry , Protein Binding
8.
Comput Biol Chem ; 89: 107372, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-743928

ABSTRACT

The SARS-CoV-2 virus is causing COVID-19 resulting in an ongoing pandemic with serious health, social, and economic implications. Much research is focused in repurposing or identifying new small molecules which may interact with viral or host-cell molecular targets. An important SARS-CoV-2 target is the main protease (Mpro), and the peptidomimetic α-ketoamides represent prototypical experimental inhibitors. The protease is characterised by the dimerization of two monomers each which contains the catalytic dyad defined by Cys145 and His41 residues (active site). Dimerization yields the functional homodimer. Here, our aim was to investigate small molecules, including lopinavir and ritonavir, α-ketoamide 13b, and ebselen, for their ability to interact with the Mpro. The sirtuin 1 agonist SRT1720 was also used in our analyses. Blind docking to each monomer individually indicated preferential binding of the ligands in the active site. Site-mapping of the dimeric protease indicated a highly reactive pocket in the dimerization region at the domain III apex. Blind docking consistently indicated a strong preference of ligand binding in domain III, away from the active site. Molecular dynamics simulations indicated that ligands docked both to the active site and in the dimerization region at the apex, formed relatively stable interactions. Overall, our findings do not obviate the superior potency with respect to inhibition of protease activity of covalently-linked inhibitors such as α-ketoamide 13b in the Mpro active site. Nevertheless, along with those from others, our findings highlight the importance of further characterisation of the Mpro active site and any potential allosteric sites.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/pharmacology , Protein Multimerization/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Azoles/chemical synthesis , Azoles/chemistry , Azoles/pharmacology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemical synthesis , Coronavirus Protease Inhibitors/chemistry , Humans , Isoindoles , Ligands , Lopinavir/chemical synthesis , Lopinavir/chemistry , Lopinavir/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Ritonavir/chemical synthesis , Ritonavir/chemistry , Ritonavir/pharmacology , SARS-CoV-2/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
9.
EBioMedicine ; 59: 102980, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-733876

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease as well as Lou Gehrig's disease, is a progressive neurological disorder selectively affecting motor neurons with no currently known cure. Around 20% of the familial ALS cases arise from dominant mutations in the sod1 gene encoding superoxide dismutase1 (SOD1) enzyme. Aggregation of mutant SOD1 in familial cases and of wild-type SOD1 in at least some sporadic ALS cases is one of the known causes of the disease. Riluzole, approved in 1995 and edaravone in 2017 remain the only drugs with limited therapeutic benefits. METHODS: We have utilised the ebselen template to develop novel compounds that redeem stability of mutant SOD1 dimer and prevent aggregation. Binding modes of compounds have been visualised by crystallography. In vitro neuroprotection and toxicity of lead compounds have been performed in mouse neuronal cells and disease onset delay of ebselen has been demonstrated in transgenic ALS mice model. FINDING: We have developed a number of ebselen-based compounds with improvements in A4V SOD1 stabilisation and in vitro therapeutic effects with significantly better potency than edaravone. Structure-activity relationship of hits has been guided by high resolution structures of ligand-bound A4V SOD1. We also show clear disease onset delay of ebselen in transgenic ALS mice model holding encouraging promise for potential therapeutic compounds. INTERPRETATION: Our finding established the new generation of organo-selenium compounds with better in vitro neuroprotective activity than edaravone. The potential of this class of compounds may offer an alternative therapeutic agent for ALS treatment. The ability of these compounds to target cysteine 111 in SOD may have wider therapeutic applications targeting cysteines of enzymes involved in pathogenic and viral diseases including main protease of SARS-Cov-2 (COVID-19). FUNDING: Project funding was supported by the ALS Association grant (WA1128) and Fostering Joint International Research (19KK0214) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Organoselenium Compounds/therapeutic use , Superoxide Dismutase-1/metabolism , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/pathology , Animals , Azoles/chemistry , Azoles/metabolism , Azoles/therapeutic use , Betacoronavirus/metabolism , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Dimerization , Disease Models, Animal , Enzyme Stability , Isoindoles , Mice , Mice, Transgenic , Molecular Dynamics Simulation , Neuroprotective Agents/chemistry , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Organoselenium Compounds/chemistry , Organoselenium Compounds/metabolism , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2 , Superoxide Dismutase-1/genetics , Survival Rate , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism
10.
Sci Rep ; 10(1): 7635, 2020 05 06.
Article in English | MEDLINE | ID: covidwho-196615

ABSTRACT

Proteolytic cleavage of influenza A virus (IAV) hemagglutinin by host proteases is crucial for virus infectivity and spread. The transmembrane serine protease TMPRSS2 was previously identified as the essential protease that can cleave hemagglutinin of many subtypes of influenza virus and spike protein of coronavirus. Herein, we found that a guanine rich tract, capable of forming intramolecular G-quadruplex in the presence of potassium ions, in the promoter region of human TMPRSS2 gene was quite important for gene transcriptional activity, hence affecting its function. Furthermore, 7 new synthesized benzoselenoxanthene analogues were found to enable stabilizing such G-quadruplex. More importantly, compounds can down-regulate TMPRSS2 gene expression, especially endogenous TMPRSS2 protein levels, and consequently suppress influenza A virus propagation in vitro. Our results provide a new strategy for anti-influenza A virus infection by small molecules targeting the TMPRSS2 gene G-quadruplex and thus inhibiting TMPRSS2 expression, which is valuable for developing small molecule drugs against influenza A virus and also may be a potential candidate as anti- SARS-CoV-2 (Severe Acute Respiratory Syndrome CoV 2) lead molecules.


Subject(s)
Influenza A virus/growth & development , Organoselenium Compounds , Serine Endopeptidases/genetics , Cell Line , DNA Footprinting , Drug Discovery , G-Quadruplexes , Gene Expression Regulation/drug effects , Humans , Influenza A virus/physiology , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Promoter Regions, Genetic , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL